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Abstract

New approaches and methods for studying non-linear problems are applied to the classical problem of the motion of a heavy
rigid body about a fixed point, i.e., to the system of Euler–Poisson equations. All the asymptotic expansions of the solutions of the
Kowalewski equations, to which the Euler–Poisson equations reduce when certain constraints are imposed on the parameters, are
found using power geometry. They form 24 families. Then all the exact solutions of the Kowalewski equations of a specific class
(which includes almost all the known exact solutions) are found on the basis of these expansions. Five new families of such solutions
are found. Instead of the conventional technique of studying the global integrability of the Euler–Poisson equations, studying their
local integrability near stationary and periodic solutions is proposed. Normal forms are used for this purpose. Sets of real stationary
solutions, in the vicinity of which these equations are locally integrable, are discovered using them. Other real stationary solutions,
in the vicinity of which the Euler–Poisson equations are locally non-integrable, are also found. This is established using the theory
of resonant normal forms developed and computer calculations of the coefficients of a normal form.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of the motion of a heavy rigid body about a fixed point (a spinning top) was first examined by Euler.1

These motions are now described by the autonomous system of six Euler–Poisson differential equations (see Ref. 2,
in which the history of these equations is presented)

(1.1)

where the prime denotes differentiation with respect to the time t; A, B and C are the principal moments of inertia of
the rigid body, which satisfy the triangle inequalities i.e.,

(1.2)
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Mg is the weight of the body; x0, y0 and z0 are the coordinates of the centre of gravity of the rigid body in a coordinate
system associated with the body; p, q and r are the projections of the angular velocity vector onto the coordinate axes
associated with the body, and �1, �2 and �3 are the direction cosines of a vertical in the coordinate system associated
with the body. The system of Eq. (1.1) has three general first integrals (energy, momentum and geometric)

(1.3)

System (1.1) can be integrated in quadratures if it has an additional (fourth) first integral.2 An additional first integral
I4 has been found only in the following four cases:2

in the Euler–Poisson case

(1.4)

in the Lagrange–Poisson case

(1.5)

in the case of kinetic symmetry

(1.6)

(this case is usually treated as a sub-case of the preceding one)
in the Kovalevskaya case

(1.7)

where c = Mgx0/C.
In Sections 2 and 3, system (1.1) is considered in the case when

(1.8)

In this case, Kowalewski3 reduced the system (1.1) to the non-autonomous system of two equations with the independent
variable p. In Section 2, all 24 families of asymptotic expansions of the solutions of the Kowalewski system as p → 0 and
p → ∞ are obtained for all values of the parameters using power geometry. Several families of asymptotic expansions
of the solutions of system (1.1) are obtained from them. In Section 3, all the non-empty intersections of the families
of expansions as p → 0 with the families as p → ∞, i.e., all the solutions in the form of finite sums of powers of the
independent variable p, are found for the Kowalewski equations. They correspond to exact solutions of the system of
Eq. (1.1). Seven of them were previously found by Steklov, Goryachev, Chaplygin, Kowalewski, Appelratt and Gorr.
All five families of new exact solutions are complex.

In Sections 4 and 5, we examine the case when

(1.9)

in which system (1.1) contains only one parameter: C ∈ (0, 2]. It has four families of stationary solutions (points).
In Section 4, 44 sets of complex stationary solutions, in the vicinity of which system (1.1) is locally integrable, are
isolated from these families using a normal form; 10 of these sets are real. Such non-empty real sets exist for all C ∈ (0,
2]. In addition, the stationary points at infinity (power-law asymptotic forms of the solutions), in the vicinity of which
system (1.1) is locally integrable, are indicated. The existence of periodic solutions, in the vicinity of which system
(1.1) is locally integrable, is discussed.

In Section 5, one-parameter families of stationary solutions, in the vicinity of which there is no additional (formal)
first integral, i.e., system (1.1) is locally non-integrable, are indicated using a resonant normal form. Such stationary
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solutions exist for all C ∈ (0, 2] except for two classical cases of global integrability. Lagrange–Poisson (C = 1) and
Kovalevskaya (C = 1/2), which occur only in the case (1.9).

2. Asymptotic expansions of solutions of the Kowalewski equations

2.1. Power geometry4

Let x0
def= t be independent, and let x1, . . ., xn be dependent variables, where xi ∈C. We set X =

(x0, x1, . . . , xn) ∈Cn+1. The differential monomial a(X) is the product of the ordinary monomial

(2.1)

where c = const ∈C and M = (x0, m1, . . . , mn) ∈Rn+1, and a finite number of derivatives of the form

(2.2)

The sum of the differential monomials

(2.3)

is called a differential sum.
Let the system of ordinary differential equations

(2.4)

where the fi(X) are differential sums, be assigned. Let t → 0 or t → ∞, and let the solution of system (2.4) have the
form

(2.5)

where the coefficients bi = const ∈C and the exponents ri, s ∈C. Then the expression

(2.6)

is a power-law asymptotic form of solution (2.5).
All the power-law asymptotic forms (2.6) of the solutions (2.5) of system (2.4) can be found in the following way.4–7

Each differential monomial a(X) is mapped to its (vector) exponent Q(a) = (q0, q1, . . . , qn) ∈Rn+1 according to the
following rules. For a monomial of the form (2.1) we take Q(cXM) = M, i.e., Q(ctm0xm1

1 . . . xmn
n ) = (m0, m1, . . . , mn);

for a derivative of the form (2.2) we take Q(dlxi/dtl) = −lE0 + Ei, where Ei is the i-th unit vector in Rn+1; when
differential monomials are multiplied, their power exponents are summed as vectors: Q(a1a2) = Q(a1) + Q(a2). The
set S(f) of the power exponents Q(ai) of all the differential monomials ai(X) included in the differential sum (2.3) is
called the support of the sum f(X). Obviously, S(f ) ∈Rn+1. The closure of the convex hull �(f) of the support S(f) is
called the polyhedron of the sum f(X). The boundary ∂�(f) of the polyhedron �(f) consists of the generalized faces �

(d)
j ,

where the superscript indicates the dimension of the face and the subscript indicates its number. Each face �
(d)
j has a

corresponds to a truncated sum

Let us now consider system (2.4). Each equation has its own support Si
def=S(fi), its own polyhedron �i

def=�(fi)
with the faces �

(d)
ij and the truncated equations f̂ (di)

iji
(X) = 0. The asymptotic forms (2.6) are found as solutions of the

corresponding truncated systems of equations
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Power geometry enables us to find not only the asymptotic forms (2.6) of the solutions (2.5), but also expansions
(2.5) themselves.6,8,9 The coefficients bis can be functions of ln t, ln ln t, etc.

These asymptotic forms and expansions were calculated for the Kowalewski system (2.4). The results are presented
below.

2.2. The Kowalewski equations

For the case (1.8), Kowalewski3 proposed treating p as the independent variable, introduced the new dependent
variables

(2.7)

and obtained the system of equations in the new variables

(2.8)

where the dot denotes differentiation with respect to p. Here

(2.9)

This change of coordinates uses the first of the integrals (1.3) and transforms the other two integrals to the respective
forms

(2.10)

We introduce the new parameters

(2.11)

Then, for ai, bi in (2.8) and ci, di in (2.10), we obtain
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Fig. 1.

(2.12)

where x and y satisfy the inequalities

(2.13)

Let D denote the corresponding set of points (x, y). In the x, y plane the set D is the half-strip bounded by the straight
lines y = x ± 1 and the segment x + y = 1 with excluded segment y = 1. The set D is located entirely in the first quadrant.

System (2.8) and integrals (2.10) possess the symmetry

(2.14)

In the generic case for system (2.8), the polyhedrons �(f1) and �(f2) are identical and are represented in Fig. 1,
which shows the notation of the vertices Q1, . . ., Q5, the edges �

(1)
1 , . . ., �

(1)
8 and the faces �

(2)
1 , . . . , �

(2)
5 of this

polyhedron. The polyhedron �(f1) is a tetragonal pyramid with vertices Q1 = (1, 1, −2), Q2 = (0, 0, 0), Q3 = (1, 0,
0), Q4 = (0, 1, 0) and Q5 = (0, 0, 2). The base �

(2)
5 of this pyramid is spanned onto the vertices Q1, Q3, Q4 and

Q5 and is on top in Fig. 1. The edges �
(1)
4 , �

(1)
5 and �

(1)
8 are located on the q1, q2 and q3 axes, respectively, and

connect the vertices Q3, Q4 and Q5 of the base �
(2)
5 to the vertex Q2 of the pyramid. The edge �

(1)
1 connects the

vertices Q1 and Q2. The lateral faces �
(2)
3 and �

(2)
4 of the pyramid lie in the (q1, q3) and (q2, q3) coordinate planes,

respectively.
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The following have been found for the solutions �(p) and �(p) of the Kowalewski system (2.8) as p → 0 and p → ∞

a) all the power-law asymptotic forms10–19

(2.15)

b) all the power expansions10–19 of the form

(2.16)

Re s > 0 and � = −1 if p → 0, and Re s < 0 and � = 1 if p → ∞;
c) all the power logarithmic expansions of the form (2.16), where �0, �0 = const �= 0, and �s and �s are polynomials in

ln p;6,14,18

d) the exponentially small additions to the power and power logarithmic expansions;9

e) all the non-power-law asymptotic forms5,14,18 of the form (2.15), where �0 and �0 are functions of ln p and ln ln p;
f) complicated expansions of the form (2.16), where �0, �0, �s and �s are series in decreasing powers of ln p.20

These results are systematically presented below in Subsections 2.3–2.7.

2.3. Power-law asymptotic forms

All 24 families F1 − F24 of the power-law asymptotic forms (2.15) were found in Refs. 10–19. It was shown in
Ref. 19 that they exhaust all the power-law asymptotic forms for all values of the parameters. The data for them are
presented in Table 1. The first column contains the index k of the family Fk, the second column contains the index k̄ of

the symmetric family Fk̄ obtained according to (2.14) (Fk̄
def=Fk), the third column contains the values of �, � and � for

the family Fk, the fourth, fifth and sixth columns contain the values of �0 and �0 if they are defined and the principal
constraints in the domain of definition of the family Fk, and the last column indicates the vertex Qj, the edge �

(1)
j or

the face �
(2)
j of the polyhedron �(f1) that corresponds to the family Fk. Here �0 =

√
16xy2 − 8x2y + 9x2 − 16xy.

Fig. 2 shows the regions F1, F′
1, F0 and F2 and their boundary curves � = −1 and � = 4 in the set D, and Fig. 3 shows

Fig. 2.
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Table 1

k k̄ �, �, � �0 �0 Constraints Face

1 2 0, 1, −1 	 �= 0 Q1

3 3 0, 1, −1 Q1

4 4
2

3
,

2

3
, −1 	 = 0 Q1

5 6 −1, 2, −1
x

y − 1
�

(1)
2

7 8
x − �0

2(x − 2y)(y − 1)
, 2, −1

x − 2y

2 − �
(x, y) ∈ F1 ∪ F′

1 �
(1)
2

9 10
x − �0

2(x − 2y)(y − 1)
, 2, 1

x − 2y

2 − �
(x, y) ∈ F2 ∪ F0 �

(1)
2

11 12 2,
2

3
, 1

y

y − 1
x = y �

(1)
6

13 14 2,
y

y − 1
, 1

y

y − 1
x = y > 2, 	 �= 0 �

(1)
6

15 16 2,
y

y − 1
, 1

y

y − 1
x = y > 2 �

(1)
6

17 18 2,
y

y − 1
, 1

y

y − 1
x = y > 2, 	 = 0 �

(1)
6

19 19 2, 2, 1
x − 1

x − 2y

y − x

x − 2
x �= 1, 2, y, 2y �

(2)
5

20 21 2, 2, 1 − 1

2
x = y = 2 �

(2)
5

22 22 2, 2, 1
1 − x

y
x − y x �= 1, y �

(2)
5

23 24 � ∈ (0, 1), 2 − �, −1
4


�0(� − 2)2
y = (� − 2)2

�2
> 1 �

(1)
1

	 = 0, z2 = 4
2

the portions of the straight lines x = 1, x = 2, x = y and x = 2y, on which some of the families Fk are defined or are not
defined, and the two points x = y = 2 and x = 1, y = 1/2, at which the families F20 and F2 are defined. In the set D, the
domains of definition of the families F1 − F10, F19 and F22 − F24 are two-dimensional, the domains of definition of
the families F11 − F18 are one-dimensional, and the domains of definition of the families F20 and F21 consist of one
point. It can be seen from Table 1 that the exponents � and � are complex numbers with non-zero real parts (Fig. 2)
only for F9 when (x, y) ∈ F0 and for F10 when (x, y) ∈ F0. In all other cases, they are real.

Fig. 3.
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2.4. Power expansions

Each power-law asymptotic form

(2.17)

of the solutions of system (2.8) has four eigenvalues s1, . . ., s4. When the corresponding power expansions

(2.18)

of the solutions of system (2.8) are constructed, the coefficients �s and �s are successively determined for increasing
or decreasing values of |Re s| from a system of linear equations. If the number s is not an eigenvalue, the matrix of
the system is non-degenerate, and the coefficients �s and �s are uniquely defined. If s is an eigenvalue, the matrix of
the system is degenerate, and it has a solution only when the compatibility condition holds. If this condition holds, a
one-parameter family of the coefficients �s and �s exists. An eigenvalue s is called critical if � Re s < 0. We recall that
� = −1 if p → 0 (in this case, Re s > 0 in expansions (2.18)) and � = 1 if p → ∞ (in this case, Re s < 0). The critical
eigenvalue si is called dangerous if there is a non-trivial compatibility condition for s = si. The two eigenvalues s3 and
s4 correspond to the integrals f3 and f4 from relations (2.10) in the sense that substitution of expansions (2.18) into the
integral fi gives an expansion in powers of p in which �si and �si are first encountered with the zero power of p, as is
the constant of the integral fi (i = 3, 4). Therefore, the eigenvalues s3 and s4 are always non-dangerous. We order the
remaining eigenvalues s1 and s2 as follows: Re s1 ≤ Re s2. It turned out that only one of them can be dangerous, and
this occurs in comparatively rare cases.

The eigenvalues s1, . . ., s4 were calculated for the 24 families Fk of the power-law asymptotic forms (2.17), and the
dangerous eigenvalues were identified. The family of the power expansions (2.18) that corresponds to the family Fk of
the power-law asymptotes (2.17) is denoted by Hk. The results of these calculations are presented in Table 2. The first
column contains the index k of the family, which is followed by the eigenvalues s1, . . ., s4, the dangerous eigenvalues
and the number of arbitrary coefficients in expansions (2.18). This table was compiled as a continuation of Table 1.

Table 2

k s1 s2 s3 s4 Dangerous eigenvalues Number of arbitrary constants

1 −1 0 0
1

2
3

3 0 0 1 1 4

4 −1 0 − 1

3
0 2

5 − 5 + �1

4

�1 − 5

4
0 2 s2 − n 2, 3

7 −2 + �

2
0 −� − 1 −2� 3

9 −2 + �

2
0 −� − 1 −2� s1 = n(2 − �) 3, 4

11
1 + �3

6

�3 − 1

6
− 1

3
0 s1 = −n + 2

3
2, 3

13 0
3

2
� − 1 0 1 − � 3

15 0 0 1 − 3

2
� 2 − 5

2
� 4

17 0
5

2
� − 2 � − 1 0 2

19
1 + �5

2

�5 − 1

2
−3 −4 s1 = − 1

n + 2
, s1 = s2 = 1

2
2, 3, 4

20 −1 0 −3 −4 4

22 −2 −1 −3 −3 s1 = 2s2 = −2 4

23 � − 1 0 −1 −� 1
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Here

and n is any natural number. It can be seen from Table 2 that the dangerous eigenvalues for the families H5, H6, H9, H10
and H19 are encountered on curves in the set D. The dangerous curves with n = 1, 2, 3, 4, 5 for the families H5, H9
and H19 are shown in Fig. 4. The critical eigenvalues s1 and s2 for the family H19 are complex in the regions H0 and
H0, which lie below the lowermost curve and above the uppermost curve corresponding to s = −1/2. The dangerous
eigenvalues for the family H11 form a denumerable set of points on the straight line x = y. In particular, this set includes
the point x = y = 2, at which the additional Kovalevskaya first integral (1.7) exists. At this point, s1 = −4/3 and n = 2.
However, at this point, the compatibility condition for H11 holds. In addition, for y < 1, the expansions (2.18) of
the family H11 have complex exponents because s1 and s2 are complex and Re s1 < 0. Finally, for F22 there are no
corresponding power expansions because the compatibility condition does not hold in its domain of definition (i.e.,
when x �= y and x �= 1). Therefore, the family H22 is absent. According to the theory in Ref. 8, expansions (2.18) can
diverge only for H11 − H18, and they converge for the remaining families.

Fig. 4.
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2.5. Power logarithmic expansions

All the power logarithmic expansions

(2.19)

of the solutions of system of Eq. (2.8), where �s and �s are polynomials in ln p, were also found for the power-
law asymptotic forms (2.15) (Ref. 6, Section 3.3). Such expansions appear only in cases in which the compatibility
condition does not hold. According to Table 2, they exist for the seven families F5, F6, F9, F10, F11, F12 and F19 on
the dangerous curves and points in the set D. According to the results previously obtained (Ref. 6, Lemma 2.2 and
Example 2.2), one-parameter logarithms are obtained, i.e., the coefficients of ln p in expansions (2.19) depend on one
arbitrary constant, in all these cases. In addition, three cases of resonant critical eigenvalues si exist.

Case 1. For the families F5 and F6 when s2 = s4 = 2.
Case 2. For the families F19 when s1 = s2 = −1/2.
Case 3. For the families F22 over the entire domain of definition, i.e., in the region where x �= y and x �= 1, when

s1 = 2s2 = 2.

In these cases, two-parameter logarithms are obtained (Ref. 6, Lemma 2.2 and Example 2.3), i.e., the coefficients
of ln p in expansions (2.19) depend on two arbitrary constants. In Cases 1 and 2, the compatibility condition holds, and
the logarithms first appear in the first power. In Case 3, the compatibility condition does not hold, and the logarithms
first appear in the second power. We will consider these cases separately.

Case 1. This case was described for the family F5 (Ref. 11, Section 6.2) as Case 6 and was also discussed further
(Ref. 13, Section 16.1). In the set D, it is realized on the curve

(2.20)

(Fig. 4, the family H5, n = 2). The expansions of the solutions have the form

where �0 is an arbitrary constant and �0 = x/(1 − y). The equality (Ref. 6, Section 3.4)

holds on curve (2.20), and the compatibility condition holds for s = 2. We seek �2 and �2 in the form

(2.21)

For the four coefficients bij we obtain the system of two equations

(2.22)

Here � = 20y/(y + 20). We take b10 and b11 as the arbitrary parameters, and then b20 and b21 are uniquely determined
from the system of linear Eq. (2.22). If b11 = 0, then b21 = 0 according to the first equation in (2.22), and the coefficients
�2 and �2 do not contain logarithms and depend on the single parameter �2 = b10. Then the power expansion previously
written down (Ref. 11, expansions (6.2.10) and (6.2.11)) is obtained.

The family F6 is symmetric to the family F5 according to (2.14). Therefore, the structure of the presence of ln p in
expansions (2.19) for it is similar to the case in question.

Case 2 (Ref. 12, Sections 8.3 and 8.7). In the set D, this case is realized on the curve

(2.23)
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(Fig. 4, the family H19, s = −1/2) for x �= 1, x �= y. The expansions of the solutions have the form

(2.24)

For simplicity, we will consider only the single point x = 5/2, y = 5/3 on curve (2.23). For s = s0 = −1/2, we seek �1 and
�1 in the expansion (2.24) in the form (Ref. 6, Lemma 2.2 and Example 2.3)

Here the constants b01 and b11 are arbitrary, b02 = −(25/9)b11, and b12 = 0 (Ref. 6, Section 3.5). On curve (2.23),
away from the point considered the constants b01 and b11 remain arbitrary, and b02 and b12 are expressed in terms of
these constants and x. Thus, here, too, there is a two-parameter logarithm.

Case 3 (Ref. 12, Section 8.2). Here x �= 1, x �= y, and the expansion of the solutions has the form (2.24), where

(2.25)

For n = 2, we seek (�2, �2) = B0 + B1 ln p + B2(ln p)2, where Bi = (bi1, bi2), i = 0, 1, 2. We have (Ref. 6, Section 3.6)

(2.26)

Here b01 and b11 are arbitrary constants. When s = −3, i.e., n = 3, the compatibility condition holds (because the critical
eigenvalue s3 = −3 is not dangerous). Therefore, the coefficients �3 and �3 are second-degree polynomials in ln p
and have one arbitrary parameter. According to Theorem 2.3 in Ref. 6, in the expansions (2.24) the degree of the
polynomials �n and �n in ln p does not exceed n.

The presence of a two-parameter logarithm prevents the existence of an additional analytic first integral in system
(2.8). In Case 3, it is absent in the domain of definition of the family F22, i.e., when x �= y and x �= 1. In Case 1, it
is absent on curve (2.20). This curve intersects the straight line x = y at the point x = y = 22. Therefore, the additional
analytic first integral is also absent at this point.

2.6. Non-power-law asymptotic forms

The six families G1 − G6 of non-power-law asymptotic forms were found.5,14,18 The family G1 was determined
on the curve x = 2y(y − 1)/(y + 2) (Fig. 2, � = −1). For this family,

(2.27)

where c and �1 are arbitrary constants.
The family G3 was determined on the curve x = 16y(y − 1)/(8y − 9) (Figs. 2 and 4, the family H9, � = 4) and has

the form

(2.28)

where c and �1 are arbitrary constants.
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The family G5 was determined for x = 2, y �= 2 (see Fig. 3, x = 2) and has the form

(2.29)

where

and �2 is an arbitrary constant.
The families G2, G4 and G6 are symmetric to the families G1, G3 and G5, respectively, according to (2.14). They

were determined on the lines x = 2(1 − y)/(2y + 1), x = 16(y − 1)/(9y − 8) and x = 2y, x �= 1, respectively.

2.7. Compound expansions

The non-power-law asymptotic form (2.27) corresponds to the two-parameter family (in c and �1) of the compound
expansions20

(2.30)

where �s and �s are uniquely defined series in decreasing integer degrees of ln p, whose coefficients are polynomials
in the double logarithm ln ln p, and p−1�0 and p2�0 have the form indicated in (2.27) for � and �.

Similarly, the non-power-law asymptotic form (2.28) corresponds to the two-parameter family (in c and �1) of
compound expansions

(2.31)

where �s and �s are the same as in the preceding case, and p4�0 and p2�0 are indicated in (2.28) as � and �.
For the non-power-law asymptotic form (2.29), the existence of a compound expansion like (2.30) and (2.31)

cannot yet be claimed.20 Here the expansion has a more complicated structure than expansions (2.30) and
(2.31).

2.8. Back to the system (1.1)13,14,18

According to formulae (2.9), solutions of system (1.1) can be obtained from the solutions of system (2.8). The
expansions (2.18) and (2.19) of the solutions of system (2.8) correspond to the expansions of the solutions of system
(1.1)

(2.32)

where Re s ≥ 0 if t → 0, and Re s ≤ 0 if t → ∞. If � + � �= 2, the form of the expansion is maintained, i.e., a power
expansion remains a power expansion, a power logarithmic expansion remains a power logarithmic expansion, and
a compound expansion remains a compound expansion. We will use H ′

k to denote the family of expansions of the
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Table 3

k N M �

1 2, 0, 1 0, 0, 1 −2, 0, 0, 1, 2

3 1, 0, 0 0, 0, 0 1, 0, 0, 0, 2

4 3, 1, 1 0, 0, 0 −3, 0, −1, 0, 2

5 2, −1, 2 −2, 1, −2
5 + �1

2
,

�1 − 5

2
, 0, 4, 2

7 − 2

�
, −1, − 2

�
−2, − 2

�
− 1, −2

4

�
− 1, 0, 2 + 2

�
, 4, 2

9 − 2

�
, −1, − 2

�
−2, − 2

�
− 1, −2

4

�
− 1, 0, 2 + 2

�
, 4, 2

11 −3, −3, −1 −2, −2, 0
1 + �3

2
,

1 − �3

2
, 1, 0, 2

13 − 2

�
,

2

�
, −1 −2, −2, 1 0,

2

�
− 3, 0, 2 − 2

�
, 2

15 − 2

�
,

2

�
, −1 −2, −2,

2

�
− 2 0, 0, 3 − 2

�
, 5 − 4

�
, 2

17 − 2

�
,

2

�
, −1 −2, −2, 3 − 2

�
0,

4

�
− 5,

2

�
− 2, 0, 2

19 −1, −1, −1 −2, −2, −2
1 + �5

2
,

1 − �5

2
, 3, 4, 2

20 −1, −1, −1 −2, −2, −1 1, 0, 3, 4, 2

solutions of system (1.1) obtained from the family Hk of solutions of system (2.8). Each of the families H ′
k has the six

eigenvalues 	1, . . . 	5, and 	6 = −1. They are also called the Kovalevskaya exponents. Table 3 presents the values of
N = (n1, n2, n3), M = (m1, m2, m3) and � = (	1, 	2, 	3, 	4, 	5) for the families H ′

k. The points x = y = 2 and x = 1, y = 2
are the only points where all the expansions (2.32) do not contain logarithms and have integer exponents, and there is
an additional Kovalevskaya first integral (1.7).

The families H23 and H24 have the sum � + � = 2 and the product �� = �0�0p2 + . . .. Therefore, according to the last
formula (2.9), they have t = const·ln p + . . ., i.e., t is not a power of p, and the corresponding expansions of solutions of
system (1.1) will not be power expansions.

The family H ′
11 was calculated by Appelrott.21 The families H ′

19 and H ′
20 were calculated by Kovalevskaya,22

who incorrectly indicated the eigenvalue 	3 = 0 for the family H ′
19. The exponents N, M and the eigenvalues � were

calculated for several cases by Gashenenko.23

3. Simple exact solutions of the Kowalewski equations

3.1. Introduction

For the Kowalewski Eq. (2.8) there are nine known families of particular solutions (Steklov,24 Goryachev,25

Chaplygin,26 Kowalewski,3 Appelrott,27 Gorr,28,29 and Dokshevich and Konosevich–Pozdnyakovich).30 In the non-
integrable cases, all the known particular solutions are finite sums of rational powers of variables of three types: a) p,
b) p + const, and c) p2 + const.

It is now possible to find all such solutions. According to the discussion in Section 2, the Kowalewski Eq. (2.8)
have 24 families of logarithmic power expansions of the solutions. In 10 of the families, p → 0 (we will call them
tails), and in 14 families p → ∞ (we will call them heads). The finite expansions of the solutions of type a are found
by ascertaining which tail–head pairs are compatible, i.e., give a finite expansion, and which do not. All the particular
solutions of type a, including all seven known solutions3,24–29 and five more new solutions,31–33 were obtained in this
way. All the new solutions are complex. We will next prove that there are no other solutions in the form of finite sums
of rational powers of p with complex coefficients.
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3.2. Statement of the problem

The same numbering of the families of expansions of the solutions of the Kowalewski equations that was used in
Section 2 is used here. In fact, only power expansions with rational power exponents are used because the expansions
with complex or irrational real power exponents, as well as with logarithms cannot terminate. The complex solutions
of the Kowalewski equations that correspond to complex solutions of the Euler–Poisson equations are considered.
System (2.8) has the two first integrals (2.10). In (2.8) and (2.10) the coefficients ai, bi, ci and di are to the rational
functions (2.12) of the parameters (2.11), where h and l are values of the energy and momentum integrals (1.3)
for the Euler–Poisson equations (1.1). Here x and y are real and satisfy inequalities (2.13), which define the set D;
z, 	 ∈C; 
 ∈R, 
 �= 0. Systems (2.8) and (2.10) have the symmetry transformation (2.14).

Problem. It is required to find all the solutions �(p) and �(p) of the system (2.8) that are finite sums of rational powers
of p:

(3.1)

where �k and �l are rational numbers, the constants �k, �l ∈C, and �0, �m, �0, �n �= 0.

The solutions of the Kowalewski Eq. (2.8) that correspond to real solutions of the Euler–Poisson equations, i.e.,
the solutions for which 	, z ∈R and (y − 1)�, (y − 1)� ≥ 0, are considered as real solutions. The finite solution (3.1)
is considered known if it was published somewhere or if it can be obtained from a published solution by applying
the symmetry transformation (2.14) or by taking into account another root of the algebraic equation that specifies the
value of the specific parameter. A solution that belongs to a boundary of a (generating) family of solutions, i.e., that
lies within it, is not considered as an independent solution.

3.3. Method

The problem was solved by using the list of all the 23 families H1 − H21, H23, H24 of power expansions of the
solutions of system (2.8)

(3.2)

where

The families H1 − H21 were found in Refs. 10–18, and H23 and H24 were found in Ref. 19, where it was also
shown that there are no other expansions. This list together with the family Hj also contains the family H̄j , which is
symmetric to it according to (2.14). Usually H̄j �= H , and only H3 = H̄3, H4 = H̄4 and H19 = H̄19.

In the 10 families H1 − H8, H23, H24 the variable p → 0; as above, we will call them tails. In the 13 families
H9 − H21 the variable p → ∞; we will call them heads. Each finite expansion (3.1) has one tail and one head.
Therefore, for each pair of families consisting of a tail Hi and a head Hj , we must study the intersection

(3.3)

If it is not empty, it gives a finite expansion (3.1). If it is empty, an expansion (3.1) with such a tail and a head does not
exist. This approach enables us to find all the finite expansions (3.1).

The intersections (3.3) are analysed in the following way. For each family Hm of the expansions (3.2), the following
are known:
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the set K(m)def=K of values of s, i.e., the sets K(m)
� and K(m)

� of the power exponents � + s and � + s;
the set M(m) of admissible values of the parameters x, y, z, 	 and 
;
the arbitrary coefficients among �� + s and �� + s.

For each family Hm, any finite number of the coefficients �� + s and �� + s in expansion (3.2) for it can be computed
as rational functions of the parameters.

The conditions

are necessary for a non-empty intersection (3.3) to exist.
In the next step, the possibility of the equality ��(i) = ��(j)+s(j) is ascertained for each pair �(i) + s(i) = �(j) + s(j). The

possibility of the analogous equality for �� + s is also ascertained.

3.4. Results

In this way, 30 families of finite solutions of the type (3.1) were obtained. Altogether, there are 16 basic families
of solutions, which are denoted by R1 − R16, and 14 more solutions that are symmetric to them according to (2.14)
because R7 and R13 are symmetric to themselves: R7 = R̄7, R13 = R̄13.

The new families are
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Here R3 ⊂ R2. All these solutions are complex. The solutions R1 and R3 are assigned to the integrable Kovalevskaya
case (1.7), and R5 is assigned to the integrable Chaplygin case when y = 4.

Gorr28 found a complex solution, which can be written in the detailed form

where �0 satisfies the equation

and the other coefficients are

However, the solution R5, which is written above, was missing.
All the other known families of solutions have real parts. The family R8 belongs to the closure of the family R11, and

R9, R10 ⊂ R14. The solutions R9, R10, R14 are assigned to the integrable Kovalevskaya case (1.7), and R6 is assigned
to the integrable Chaplygin case.

If the finite expansion (3.1) is written in the form

where �1 ≤ �2, �1 ≤ �2, the results presented above can be represented as in Table 4, which also gives the data of
other authors.3,24–29,34 Its columns correspond to the basic tails (without the symmetric tails), and its rows correspond
to all the heads. The intersection of the i-th column and the j-th row has the index k of the family Rk = �i ∩ Hj .
References are given for the known solutions in square brackets. An empty cell in the table corresponds to the empty
intersection Hi ∩ Hj . A bar over the index k, i.e., k̄, or over a reference denotes the symmetric solution R̄k according to
(2.14) or the solution that is symmetric to the solution presented in the reference. Since the intersections of the heads
H13, H14, H17 and H18 with all the tails and the intersections of the tail H23 with all the heads are empty, Table 4 does
not contain rows and a column that correspond to these families.

Table 4

Heads Tails

H1 H3 H4 H5 H7

�1 = 0 �1 = 0 �1 = 2/3 �1 = −1 �1 < 0

�1 = 1 �1 = 0 �1 = 2/3 �1 = 2 �1 = 2

H9 �2 > 2, �2 = 2 11 [3], 12 [25] 4 [28]
H10 �2 = 2, �2 > 2 8 [3] 11 [3], 12 [25] 4̄ [28] 15, 16
H11 �2 = 2, �2 = 2/3 5
H12 �2 = 2/3, �2 = 2 5
H15 �2 = 2, �2 ∈ (1, 2) 6 [29]
H16 �2 ∈ (1, 2), �2 = 2 6̄ [29]
H19 �2 = �2 = 2 13 [24] 7 [26] 2
H20 �2 = �2 = 2 10 [27] 14 [27] 1 3
H21 �2 = �2 = 2 9 [34] 14 [27]
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We will now formulate the main result.

Theorem 3.1. The system of Eq. (2.8) has only the exact solutions of the form (3.1), as indicated in Table 4.

A detailed proof can be found in the preprint Ref. 31.

4. The local integrability of the Euler–Poisson equations

4.1. Local integrability

Consider an autonomous system of ordinary differential equations (the prime denotes a derivative with respect to t)

(4.1)

where X = (x1, . . ., xn) and the �j are polynomials. Such a system is defined in the n-dimensional complex phase space
C

n. We will say that system (4.1) is locally integrable in the domain D ⊂ Cn if in this domain it has the necessary
number of independent first integrals of the form ai(X), where the functions ai(X) are analytic in the domain D. Of
course, according to Cauchy’s theorem, in some vicinity of the non-stationary point X0, where there is at least one
function for which �j(X0) �= 0, system (4.1) has n − 1 analytic first integrals, i.e., is integrable. Therefore, the question
of integrability is interesting for domains that contain such singularities as a stationary solution (a fixed point) or a
periodic solution.

Thus, the local integrability of system (4.1) can be studied near its singular points. Heretofore, only its global
integrability over the entire phase space was studied. The first attempts of this kind were undertaken in Refs. 35–37
and were continued in Refs. 38–40.

Below all vectors are denoted by capital letters and are written down as row matrices, and an asterisk denotes the
transposition.

4.2. Normal forms

The local integrability (or non-integrability) of a system of ordinary differential equations near a singularity can
be established most simply using its normal form (Ref. 41, Chapter 3; Ref. 4, Chapter 5, Section 6). This is true for
singularities such as a stationary point, a periodic solution and an invariant torus. Here we refer only to the normal
form of the system in the vicinity of its stationary point X = 0, where the system (4.1) has the form

(4.2)

Here A is a constant square matrix and the vector polynomial �(X) = (�1(X), . . ., �n(X)) does not contain constant or
linear terms. Suppose the linear substitution

(4.3)

brings the matrix A into the Jordan form J = B−1AB and brings the entire system (4.2) into the form

(4.4)

Suppose the formal change of coordinates

(4.5)

where � = (
1, . . . 
n) and 
j(Z) are formal power series without constant and linear terms, transforms the system (4.4)
into the system

(4.6)

where �(Z) is a vector power series without constant and linear terms. We will write it in the form

(4.7)
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where

and Ej is the j-th unit vector. We setN = N1 ∪ . . . ∪ Nn. Since J is a Jordan matrix, its diagonal � = (	1 . . ., 	n) consists
of the eigenvalues 	j of the matrix A.

System (4.6), (4.7) is called a resonant normal form if a) the matrix J is a Jordan matrix and b) (4.7) contains only
the resonant terms gjQZQ for which the scalar product

(4.8)

Theorem 4.1 (42). A formal change (4.5) exists that brings the system (4.4) into the normal form (4.6), (4.7).

The properties of the normal form and the normalizing transformation are described in Refs. 41,4 and in Ref. 43.
Let k be the number of linearly independent solutions Q = N of Eq. (4.8), which is called multiplicity of the resonance.
Integration of the normal form (4.7) can be reduced to solving a system of order k for the k resonant variables. Note
the following

Property 1 (Ref. 4, Chapter 3, Section 1). If system (4.4) has the linear automorphism t̃ = �t, Y∗ = LY∗, its normal
form (4.6) has the analogous automorphism t̃ = �t, Z̃∗ = LZ∗.

Bringing a system into its normal form involves the introduction of coordinates in which the system has the
simplest form and its solutions are as straightened as possible. However, the normalizing transformation does not
always converge and give an analytic change of the local coordinates. It often diverges and can be used only for an
approximate description (with accuracy of any order) of the solutions near a stationary point. However, even in the
case of divergence, it enables us to find families of periodic solutions and families of conditionally periodic solutions
adjacent to the stationary point (Ref. 41, Chapter 3, Section 3).

The conditions imposed on the normal form (4.7) which ensure convergence of the normalizing transformation were
pointed out in Ref. 43. We will formulate them for the cases encountered here.

Condition A. Two power series �(Z) and �(Z) exist such that

in the normal form (4.7).
We set

Condition �. The series

converges.

Theorem 4.2 (43). If in the analytic system (4.4) the vector Λ satisfies condition ω and the normal form (4.6), (4.7)
satisfies condition A, the normalizing transformation (4.5) is analytic for sufficiently small |zj|.

4.3. Stationary points

Consider system (1.1) with

(4.9)

Then system (1.1) takes the form

(4.10)
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System (4.10) has one parameter c ∈ (0, 2]. This half-open interval corresponds to the values of c in the mechanical
problem. System (1.1) is integrable in quadratures if it contains an additional first integral.2 System (4.10) has an
additional first integral in only two cases: the case in which c = 1 (the Lagrange–Poisson case) and the case in which
c = 1/2 (the Kovalevskaya case).

Theorem 4.3. System (4.10) has two pairs of two-parameter families of stationary points

(4.11)

(4.12)

and all its stationary points belong to these families.

This trivial result can be derived both directly from system (4.10) and from Staude’s classical results.
The families S� exist for any c ∈C. The families T� exist for c �= 1 and pt �= 0. The intersections of the families are

as follows:

The families S� are real if p0 ∈R. The families T� are real if pt ∈R and (c − 1)2p4
t ≤ 1.

4.4. The families Sσ

In the vicinity of each stationary point (4.11) we introduce the local coordinates

(4.13)

System (4.10), written in the local coordinates (4.13), takes the form

(4.14)

If the coordinates (4.13) are treated as X = (x1, . . ., x6):

(4.15)

then system (4.14) takes the form of system (4.2) with n = 6 and the matrix A:

(4.16)
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Its characteristic equation

(4.17)

where

(4.18)

has two zero roots and paired roots:

(4.19)

where

We will examine the dependence of 	3, 	4, 	5 and 	6 on the two real parameters

According to equalities (4.18),

(4.20)

When a2 − 4b ≥ 0, both 	2
3 and 	2

5 are real. After some elementary transformations, the equation a2 = 4b takes the
form

In the x, y plane it defines a parabola, which we denote by C1 (see Fig. 5). To the left of it a2 − 4b < 0. We denote

this set by D1. In it 	2
3 = 	2

5, and Im 	2
3 �= 0. Then 	3 = 	5, and Re 	3 �= 0, Im 	3 �= 0. Therefore, Im(	3/	5) �= 0, i.e.,

the ratio 	3/	5 is not real.
Now consider the part of the x, y plane where a2 − 4b > 0. In this part, both 	2

3 and 	2
5 are real. The sign of their

ratio is the same as the sign of b, i.e., when b < 0, the ratio 	3/	5 is pure imaginary and non-zero. According to (4.20),

Fig. 5.
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the equation b = 0 defines the hyperbola x + y(x − 1) = 0 with asymptotes x = 1 and y = −1; its upper branch C2 and its
lower branch C3 are shown in Fig. 5. In the half-plane x ≥ 1/2, C2 does not meet the parabola C1, but C3 is tangent to
C1 at the point where a = b = 0, i.e., at the point with coordinates

(4.21)

The parts of the half-plane x ≥ 1/2 that are located above the curve C2 and below the curve C3 are denoted by D2
and D3, respectively (Fig. 5). In them the ratio 	3/	5 is pure imaginary. Outside the sets D1, D2, D3 the half-plane
x ≥ 1/2 consists of the two parts D4 and D5, which are bounded by the curves C1, C2, C3 with the set D4 being located
above the point (4.21) and D5 below it (Fig. 5). In D4 and D5 the ratio 	3/	5 is real. Note that the curves C1, C2, C3
only bound the sets D1, . . ., D5 and do not enter them. Thus, the following statement has been proved.

Lemma 4.1. In the set D1 the eigenvalues 	3, 	4, 	5 and 	6 are complex: 	4 = −	3, 	5 = 	̄3, 	6 = −	̄3. In D2 and
D3 two of them are real, and two are pure imaginary. In D4 and D5 they are all either pure imaginary or real.

These results trivially follow from the results of Rumyantsev and his students.44–46

Let 	 �= 0 be the root of Eq. (4.17). The corresponding eigenvector of matrix (4.16) is

(4.22)

where b3 �= 0 is any number. When the sign in front of 	 is reversed, only the second and fifth components change:
they change sign. Therefore, the following statement holds.

Lemma 4.2. In the sets D1, . . ., D5 the transformation (4.3), which converts matrix (4.16) into a diagonal matrix
with the diagonal

(4.23)

has the form

(4.24)

In fact, the columns of the matrix B from (4.3) are the eigenvectors of matrix A from (4.2), i.e., (4.16), which have
the form (4.22).

System (4.14) has the automorphism

(4.25)

After the transformation (4.24), this automorphism in the coordinates (4.15) takes the form

(4.26)

The proof is simple in the reverse direction, that is, from (4.26) to (4.25).
Thus, the following statement has been proved.

Lemma 4.3. In the sets D1, . . ., D5 system (4.14) is transformed by the linear substitution (4.24), which diagonalises
the matrix of its linear part, into system (4.4), which has the automorphism (4.26).
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4.5. The existence of four integrals

Theorem 4.4. In the sets D1, D2 and D3 the normalizing transformation (4.5) converges for sufficiently small |zj|.
Proof. According to Lemma 4.1, in these sets the ratio 	3/	5 is not a real number; therefore, Eq. (4.8), i.e., 〈Q, �〉 = 0,
with the vector (4.23) has only the real solutions Q = (q1, . . ., q6), in which q1 and q2 have arbitrary values, q3 = q4,
and q5 = q6. According to the definition of the set N in Subsection 4.2, if Q ∈N, all the components qj are integers,
q1 ≥ −1 and then q2 ≥ 0 or q2 ≥ −1 and then q1 ≥ 0 and q3, q5 ≥ 0. Therefore, in the normal form (4.7) with n = 6, the
series gj depend only on

(4.27)

which are resonant variables here. Therefore, the normal form (4.7) has the form

(4.28)

According to Property 1 and Lemma 4.3, the normal form (4.28) has an automorphism similar to (4.26) with the yj

replaced by zj. For the resonant variables (4.27), from the automorphism (4.26) we obtain the automorphism

Therefore, in the normal form (4.28)

(4.29)

Now, let us ascertain in which cases condition A, i.e.,

holds in the normal form (4.28). According to (4.19) and (4.29), satisfaction of the two equalities

(4.30)

is necessary and sufficient for this. These equalities comprise a system of linear equations for the series � and �. Using
Lemma 4.1, we evaluate its determinant � = 	3	̄5 − 	̄3	5 in the sets D1, . . ., D5. In D1 we have 	5 = 	̄3; therefore,
� = (	3 − 	̄3)(	3 + 	̄3) = 4i Re 	3 Im 	3 �= 0. In D2 and D3 we have 	3	5 = −	3	5; therefore, � = 2	3	̄5 �= 0. In
D4 and D5 we have 	̄3	5 = 	3	̄5; therefore, � = 0. Consequently, in D1, D2 and D3 the system of Eq. (4.30) is solvable
for � and �; therefore, the series � and � always exist, i.e., condition A holds. In D4 and D5 the system (4.30) cannot
be solved, and condition A does not hold.

In the sets D1, D2 and D3 condition � is trivial, because if 〈Q, �〉 �= 0, for an integer Q

According to Theorem 4.2, the normalizing transformation is analytic.
For the resonant variables (4.27), system (4.28), (4.29) gives the equations

Therefore, system (4.28), (4.29) has four independent first integrals

(4.31)

Since the normalizing transformation is analytic and reversible, in sets D1, D2 and D3 system (4.14) has four
independent analytic local first integrals. Thus we obtain the following corollary. �

Corollary of Theorem 4.4. In the sets D1, D2 and D3 system (4.10) is locally integrable.

Taking into account the signs of � and p0, we obtain 12 complex sets with local integrability.
If p0 = ±√

y� is real, system (4.14) is real, and its normal form is also real in appropriate coordinates (Ref. 4,
Chapter 5, Section 6, Property 4; see also Ref. 41, Chapter 3, Section 1). In particular, the four first integrals (4.31) are
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real. When � = +1, p0 = ±√
y is real for y ≥ 0, i.e., the set D2 is real. When � = −1, p0 = ±√−y is real for y ≤ 0, i.e.,

D1 and D3 are real. Altogether six real sets (taking into account the sign of p0) with local integrability are obtained.
For each value x ≥ 1/2, i.e., c ∈ (0, 2], there are real stationary points, near which the system is locally integrable.

A similar analysis for the families T� (see (4.12)) showed that they have 32 complex sets with local integrability.40

Among them four sets are real, and in all these sets c < 3/4.

4.6. Stationary points at infinity36,47

In Subsections 2.4 and 2.5, 24 families of power logarithmic expansions of solutions that have power-law asymptotic
forms were found using power geometry for the Kowalewski Eq. (2.8). Among them, eight families of power expansions
contain the largest possible number of arbitrary constants, i.e., the solutions of these families fill a domain in phase
space in which there is a complete set of the first integrals that correspond to these arbitrary constants. However, these
(local) first integrals can exist only in part of the phase space and not in the entire phase space. In these cases similar
(local) first integrals exist in the Euler–Poisson system (1.1) and have the form a(X)/b(X), where the functions a(X)
and b(X) are analytic in the corresponding domain. The power transformation of the system of Euler–Poisson Eq.
(1.1) was used to find these domains and analyse the structure of the phase space in them. It has been shown (Ref. 4,
Chapter 3) that the power-law asymptotic form of a solution can be transformed into a stationary point using the power
transformation

where �̃ is a square matrix. This enables us to calculate the normal form in the vicinity of a power-law asymptotic
form, as was done for 3 of the 24 families indicated. The normalization was performed by Edneral using a program
that he wrote in the MATHEMATICA system.

In Subsection 2.3 we described the 24 families F1 − F24 of power-law asymptotic forms of the solutions of the
Kowalewski Eq. (2.8) in the case B �= C, x0 �= 0, y0 = z0 = 0. Among them there are 17 for A = B, i.e., for the case (4.9)
with c �= 1. Fifteen of these families Fk correspond to the families Fk of power-law asymptotic forms of the solutions
of the Euler–Poisson Eq. (4.10) described in Section 2.8. To investigate the vicinities of the asymptotic forms of the
family F10, we perform the power transformation

(4.32)

with the matrix

(4.33)

and the time change dt = x6d�. Then system (4.10) takes the form

(4.34)
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where the dot denotes a derivative with respect to �. As a result, the first integrals (1.3), (1.5) and (1.7) take the form

(4.35)

Theorem 4.5 (Refs. 35,46, Section 5). When x5 = x6 = 0, system (4.34) has the three families of fixed points

(4.36)

In all the families x1 = c/2, and x2 = ic/2. Families A and B with c ∈ (1/2, 1) correspond to two branches of F ′
10, which

are joined when c = 3/4. Family A with c ∈ (0, 1/2) and family B with c ∈ (1, 2) correspond to F ′
8. Family C corresponds

to F ′
6.

According to the discussion in Subsection 2.8, these families correspond to the following families of power-law
asymptotic forms of the solutions of system (4.10) as t → 0:

(4.37)

In all the families r = b3t−1, �1 = b4t−2, and �2 = b5t−2, where the bj are complex constants.
Family A is interesting when c ∈ (0, 1), but c �= 1/2. For the stationary points of family A, the vector of the eigenvalues

of the matrix of system (4.34), linearized near these points, is

(4.38)

Theorem 4.6 (Refs. 36,47, Section 6). System (4.1) is locally integrable near the power-law asymptotic form (4.37)
corresponding to A if c ∈ (3/4, 1) or if an irrational c ∈ (0, 3/4) is such that condition ω holds for the vector (4.38).

Edneral wrote a program in the MATHEMATICA system for calculating a normal form48 and used this program
to calculate the normal form (4.7) near family A for several rational values of c ∈ (0, 3/4) to the terms gjQZQ of the
high orders

∑
qi ≥ 6. The calculated normal form was always linear. Therefore, it can be assumed that system (4.10)

is always locally integrable near family A for c ∈ (0, 3/4).
When c = 3/4, families A and B coinside, and, according to (4.38),

(4.39)

The normal form was calculated to the 10th order. It is non-linear and does not satisfy Condition A in Subsection 4.2.
This is consistent with the discussion in Subsection 2.6, where it was shown that the Kowalewski equations have a
non-power-law asymptotic form of solutions with a two-parameter logarithm (the family G4) when c = 3/4. Therefore,
the system is locally non-integrable near the stationary point of the intersection of families A ∩ B when c = 3/4.

Family B is interesting when c ∈ (1/2, 2]. In this interval, the eigenvalue vector

(4.40)

Theorem 4.7 (Refs. 36, 47, Section 7). Near the power-law asymptotic form (4.37) corresponding to family B system
(4.10) is locally integrable if c ∈ (1/2, 3/4) or if an irrational c ∈ (3/4, 2) is such that the vector Λ (4.40) satisfies
Condition ω in Subsection 4.2.

Normal forms were calculated for several rational values of c ∈ (3/4, 2). For c �= 1, 3/2, 7/4 they were also found to
be linear.
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When c = 1, according to (4.40),

(4.41)

and the calculated normal form satisfies Condition A in Subsection 4.2, where � is a series in the positive powers z2
3z

2
5

and � ≡ 0.
Thus, near the asymptotic forms (4.37) corresponding to family B, system (4.10) is probably locally integrable.
Family C is interesting when c ∈ (0, 2]. In this interval,

(4.42)

There are no analogues of Theorems 4.6 and 4.7 for it. Normal forms were calculated for several rational values of
c. They turned out to linear for c �= 1/2, 2/3, 3/4, 1, 3/2, 7/4, 2 and several other values. According to Theorem 4.2,
the normalizing transformation converges in these cases. The linear normal form has five first integrals. Thus, in the
vicinity of the power-law asymptotic forms (4.37) that correspond to family C, system (4.10) is locally integrable.

When c = 1, according to equality (4.42),

and the calculated normal form satisfies Condition A in Subsection 4.2, where � is a series in z1z4 and z2
3z

2
5, and � ≡ 0.

4.7. Periodic solutions

For periodic solutions there is a normal form theory that is similar to the theory for stationary solutions that was
briefly discussed in Subsection 4.2. Let system (4.1) have the periodic solution

(4.43)

with period T: U(t + T) = U(t), where U = (u1, . . ., un). We make the change xi = ui(t) + x̃i and write system (4.1) in
the local coordinates x̃i:

(4.44)

This system is periodic in t, and it has the zero solution X̃ = 0 and the linear variational system

(4.45)

where the n × n matrix A(t) = (∂�̃i/∂x̃i) when X̃ = 0. Let W(t) be the fundamental matrix of the solutions of the linear
homogeneous system (4.45), and let W*(t + T) = MW*(t), where M is the monodromy matrix. A periodic change

(4.46)

exists that transforms system (4.45) into the triangular system Y* = J(t)Y*, where the matrix J(t) is the lower triangular
with constant diagonal � = (	1, . . ., 	n). The entire system (4.44) takes the form

(4.47)

where ˜̃� does not contain terms that are linear in Y or independent of Y. In addition, the matrices J and ˜̃� are periodic
in t. Let the formal change of coordinates that is periodic in t

(4.48)

where � = (
1, . . ., 
n) and 
j(t, Z) are formal power series in Z without independent and linear terms, transform the
system (4.47) into the system

(4.49)
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We will write it in the form

(4.50)

System (4.49), (4.50) is called a normal form if a) the matrix J(t) is a triangular matrix with a constant diagonal
� = (	1, . . ., 	n), and b) (4.50) contains only the resonant terms gjPQZQ exp(ip
t), for which

(4.51)

For any system (4.47) a formal change (4.48) exists that transforms it into the normal form (4.49), (4.50).
Condition A for a system that is periodic in t (Ref. 42, Section 11). A Poisson series

exists, such that in the normal form (4.50)

Theorem 4.8 (Ref. 42, Section 11). If for an analytic system (4.47) the normal form (4.49), (4.50) satisfies Condition
A and the vector (iκ, Λ) satisfies Condition ω in Subsection 4.2, the normalizing transformation (4.48) converges for
sufficiently small |zj|.

For a periodic solution of the system of Euler–Poisson equations, we always have � = (0, 0, 0, 0, 	5, −	5). If 	5 �= 0
is real, the vector (i
, �) satisfies Condition �. If, in addition, the periodic solution transforms into itself upon one
of the automorphisms of the Euler–Poisson equations, the normal form for it is degenerate and satisfies Condition A.
Therefore, according to Theorem 4.8, the normalizing transformation converges. At the same time, such a normal form
has four formal first integrals, which are analytic owing to the convergence of the normalizing transformation. Thus,
system (1.1) is locally integrable near such an unstable periodic solution.

The exact solutions of the Kowalewski Eq. (2.8) discussed in Section 3 correspond to the periodic solutions of
the Euler–Poisson Eq. (1.1).49 Among them there are solutions that are unstable in the linear approximations and are
simultaneously symmetric.50–52 System (1.1) is locally integrable near such periodic solutions.

5. Local non-integrability of the Euler–Poisson equations

There have been many different proofs of the absence of an additional first integral of the Euler–Poisson Eq. (1.1)
in cases that differ from the classical cases of integrability.53 The most advanced one is the proof54 that system (1.1)
does not have a meromorphic additional integral when A = B, x0 �= 0, y0 = 0 if A/C �= 1, 2. To prove this, on the invariant
manifold p = q = �2 = 0, a one-parameter family of solutions expressed in terms of elliptic functions of the time t was
examined.54 The variational system was constructed for these solutions, its monodromy group was calculated, and
it was shown that this group does not have properties that are characteristic for a linear integrable system. Thus, the
absence of a local additional first integral near the solution chosen was proved.54 Because of the complicated form of
the solution chosen, this proof is also quite complicated.

Another method for proving the absence of a local additional first integral is proposed here. Its absence is proved (i)
in the vicinity of a resonant stationary point and (ii) by calculating the coefficients of the normal form in the vicinity
of the point indicated and verifying the necessary conditions for the existence of an additional formal integral. The
advantage of this method is that it is algorithmic: all the calculations can be performed on a computer.

5.1. Structure of a normal form at resonance (Ref. 38, Section 6)

Consider system (4.14) in the sets D4 and D5 described in Subsection 4.4. Let
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According to Lemma 4.1, in the sets D4 and D5 all the eigenvalues 	j are either pure imaginary or real, i.e., the ratio
� is a real number. To be specific, we will assume that |	5| > |	3|. Then � > 1.

If � is irrational, the normal form takes the form (4.28), (4.29). It also has four first integrals. However, in these
cases Condition A in Subsection 4.2 does not hold in general. Consequently, now it cannot be asserted that system
(4.14) has an additional local analytic first integral. The integrals (4.31) are only formal here.

Therefore, we will henceforth consider the case of a rational � = s̃/r̃, where s̃ > r̃ ≥ 1 are mutually simple integers,
i.e.,

(5.1)

We will investigate the structure of the normal form of system (4.14) at the resonance (5.1), following the previously
described approach (Ref. 4, Chapter 5, Section 10). System (4.14) is system (4.2) with n = 6. Let its normal form (4.6)
be

(5.2)

and let the vector � of the eigenvalues 	j be

(5.3)

We set

(5.4)

In this case ww̃ = �s̃
1�r̃

2.

Lemma 5.1 (38). At the resonance s̃	3 = r̃	5 in the normal form (5.2)

(5.5)

where z1g10, z1f1k, z1h1k, z2g20, z2f2k, z2h2k, gj0, f3k, �1f4k, �2f5k, f6k, �1h3k, h4k, h5k, �2h6k are power series in z1, z2,
�1, �2 (j = 3, 4, 5, 6). Here the series ρ1h3k and ρ2f5k begin with independent terms, and z1g10, z2g20, gj0 begin with
linear terms.

The proof is similar to the previously presented proof (Ref. 4, Chapter 5, Section 10, Lemma 10.2).
System (4.14) has the automorphisms (4.25) and

(5.6)

According to Property 1 in Subsection 4.2 and Lemma 4.2, the normal form (5.5) has the automorphisms (4.26) and

where the yj are replaced by zj. For the resonant variables z1, z2 in (5.4), from these automorphisms we obtain the
automorphisms

(5.7)

(5.8)

where

(5.9)

Consequently, when r̃ + s̃ is even, automorphisms (5.7) and (5.8) are identical, whereas when it is odd, they are different
and their product is the automorphism

(5.10)
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For the normal form (5.5), automorphism (4.26) and its corollary (5.7) give the equalities

or, more specifically,

(5.11)

(5.12)

Finally, when r̃ + s̃ is odd, it follows from automorphism (5.10) that the series gi in the normal form (5.5) contains
the variables w and w̃ only in even powers. Based on the normal form (5.5), (5.11), (5.12), we will construct a system
of equations for the resonant variables after introducing the notation

(5.13)

Taking into account that

we obtain the system

(5.14)

where z = (z1, z2), � = (�1, �2).
If r̃ + s̃ is an odd number, the index k in the expansions (5.14) takes only the even values 2l.

5.2. First integrals (Ref. 38, Section 7)

According to the previous discussion in Ref. 55, the expansion of the first integral of the normal form (5.2)

(5.15)

contains only resonant terms, for which

(5.16)

Therefore, the first integral can be written in the form of a power series in the resonant variables

(5.17)
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where a0, am, bm are power series of z = (z1, z2), � = (�1, �2). As a consequence of the automorphism (5.7), we have
am = bm, i.e., the integral can be written in the form

(5.18)

If r̃ + s̃ is an odd number, automorphism (5.10) dictates that this expansion contains only the even exponents m = 2n,
i.e.,

(5.19)

The derivative of the first integral (5.18) should vanish identically by virtue of system (5.14). Consequently,

(5.20)

Let r̃ + s̃ be an even number. Taking system (5.14) into account, we can write equality (5.20) for terms for which
the total order with respect to z3, z4, z5, z6 is lower than 2(r̃ + s̃). For these terms k = m = 1, and we obtain the equality

(5.21)

where in each component only terms of order lower than r̃ + s̃ are retained. For an even value of r̃ + s̃, the smallest
possible value is equal to 4 (when r̃ = 1, s̃ = 3). Therefore, equality (5.21) should hold for a term that is independent
of z, �.

Let �1, �2, �3, �4 be terms that are independent of z, � in the series z1f11, z2f21, �1F11, �2F21 from system (5.14),
respectively, and in expansion (5.18) let

(5.22)

Equality (5.21) for the independent term on the left-hand side gives the equation

which has four linearly independent solutions � = (�1, �2, �3, �4) only if

(5.23)

This is a necessary condition for the existence of four functionally independent first integrals.
Now let r̃ + s̃ be an odd number. Then, in equality (5.20) the indices k and m are even: k = 2l and m = 2n. Therefore,

taking system (5.14) into account and writing out equality (5.20) to terms with a total order with respect to z3, z4, z5,
z6 that is lower than 4(r̃ + s̃), we obtain the equality

(5.24)
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where only terms of order lower than 2(r̃ + s̃) are retained in each component. For an odd value of r̃ + s̃, its smallest
possible value is equal to 3(r̃ = 1, s̃ = 2). Therefore, equality (5.24) should hold for the term that is independent of z,
�. Now let �1, �2, �3, �4 be terms that are independent of z, � in the series z1f12, z2f22, �1F12, �2F22, respectively, and
let expansion (5.19) contain equality (5.22). Then, equalities (5.23) are also a necessary condition for the existence of
four functionally independent first integrals.

5.3. 2:1 Resonance

We return to system (4.14). In the sets D4 and D5 the resonance 	5 = 2	3 occurs on the two R� curves:

(see the dashed curves in Fig. 5). On these curves, system (4.14) has the two automorphisms (4.25) and (5.6), and
the results of Subsection 5.2 are applicable for odd r̃ + s̃ = 3. The normal forms of system (4.14) were previously
calculated35,37 along the R� curves to sixth-order terms to obtain the values of �3, �4 as functions of c ∈ (0, 2]. The
results are as follows. For � = 1 the equality �3 = �4 = 0 holds for only three values of c:

(5.25)

For � = −1 the equality �3 = �4 = 0 holds for only five values of c:

(5.26)

In addition, on the R− curve the coefficients �3 and �4 go to infinity when

(5.27)

i.e., at the points (4.21). The intersection of the set (5.25) with the union of sets (5.26) and (5.27) consists of only two
values c1 and c2, which correspond to two classical cases of global integrability. For other c ∈ (0, 2] property (5.23)
does not hold either on both R� curves or on one of them, and system (4.14) does not have an additional first integral.

When y = �p2
0 is real, the value of p0 is real if � = sgn y; therefore, when y is real, the point (4.11) is real if it

belongs to S+ for y ≥ 0 and to S− for y ≤ 0.
System (1.1) has the linear automorphism

Under this automorphism the families S+ and S− transform one into another, and the normal forms for corresponding
points of the families are similar in design and differ only with respect to the non-zero multipliers in front of the
coefficients; therefore, the coefficients �i in S− vanish where and only where the same coefficients in S+ vanish. Thus,
each point on the R� curves corresponds to a real point in S+, if y ≥ 0, and to a real point in S−, if y ≤ 0.

Thus, we have obtained the following theorem

Theorem 5.1. For each c ∈ (0, 2], except c = 1 and c = 1/2, a real stationary solution from the families S� exists, such
that it belongs to the Rδ curves and system (4.14) is non-integrable in its vicinity.

The values of �1 and �2 were also calculated as functions of C.56 They vanish and go to infinity at the same values
(5.25), (5.26) and (5.27) as do �3 and �4, i.e., condition (5.23) holds for the values (5.25) and (5.26).

Condition (5.23) is necessary, but is not sufficient for the existence of an additional integral. If it holds, the satisfaction
of another condition that relates the coefficients of subsequent terms in the normal form is necessary for the existence
of four integrals.38 Direct calculations have established56 that the other condition does not hold at c3 on R+ and at c4, c5
and c6 on R−, i.e., there is no additional local integral at these points. In fact, at these fixed points, there are additional
families of periodic solutions of the set A (Ref. 41, Chapter 3, Section 3, Refs. 57–59, Part 2), which differ from the
Lyapunov families and do not exist at other points on the R� curves.

The resonance 	5 = 3	3 was also examined. In the sets D4 and D5 it occurs on two curves that exist for c ∈ (0, 2]
(see Ref. 38). Testing of property (5.23) on these curves gave the same rules: property (5.23) is valid simultaneously
on both curves only for c = 1 and c = 1/2.56 However, when this property holds, there are only additional families of
periodic solutions, and there is no additional integral.
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Remark. The absence of a formal additional integral near the stationary solution belonging to the intersection S� ∩ R�

was, in fact, proved here. Hence it follows that there is no local additional analytic integral and no global additional
analytic (and meromorphic) integral.
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